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HOMOLOGICAL REDUCTION OF CONSTRAINED

POISSON ALGEBRAS
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Reduction of a Hamiltonian system with symmetry and�or con�
straints has a long history� There are several reduction procedures�
all of which agree in �nice� cases ���� Some have a geometric emphasis
� reducing a 	symplectic
 space of states ����� while others are algebraic
� reducing a 	Poisson
 algebra of observables ���� Some start with a
momentum map whose components are constraint functions ����� some
start with a gauge 	symmetry
 algebra whose generators� regarded as
vector �elds� correspond via the symplectic structure to constraints �����
The relation between symmetry and constraints is particularly tight in
the case Dirac calls ��rst class�� The present paper is concerned entirely
with this �rst class case and deals with the reduction of a Poisson alge�
bra via homological methods� although there is considerable motivation
from topology� particularly via the models central to rational homotopy
theory�

Homological methods have become increasingly important in mathe�
matical physics� especially �eld theory� over the last decade� In regard to
constrained Hamiltonians� they came into focus with Henneaux�s Report
���� on the work of Batalin� Fradkin and Vilkovisky ���� �������� empha�
sizing the acyclicity of a certain complex� later identi�ed by Browning
and McMullan as the Koszul complex of a regular ideal of constraints�
I was able to put the BFV construction into the context of homological
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perturbation theory �� and� together with Henneaux et al ����� extend
the construction to the case of non�regular geometric constraints of �rst
class� Independently� using a mixture of homological and C� �patching
techniques� Dubois�Violette extended the construction to regular but
not�necessarily��rst�class constraints �����

I am grateful to all of the above for their input and inspiration�
whether in their papers or in conversation� The present version has
also pro�tted from conversations at the MSRI Workshop on Symplectic
Topology� Finally� I would like to express my thanks to the referee
who has read several versions with extreme care� suggesting extensive
improvements� both factual and stylistic� While early revision was in
progress� Kimura sent me a copy of ���� which has also had a signi�cant
in�uence on the present exposition� as has his continued interaction
while with me at UNC as an NSF Post�Doc�

�� Preliminaries

This research touches on questions which it is hoped will be of in�
terest to mathematical physicists� symplectic and algebraic geometers
and homotopy theorists� The techniques used here are primarily those
of di�erential commutative algebra and rational homotopy theory� We
write with a dual vision and hopefully a dual audience� for example�
the constraints are functions on a symplectic manifold and the physics
literature speaks almost entirely in terms of the constraints whereas the
algebra can be expressed more invariantly in terms of the ideal gener�
ated by the constraints� We work entirely over the reals R as our ground
�eld� although any �eld of characterisitic � would do and the complex
numbers C are more common in certain physical applications� The ma�
jor Theorem �� is expressed in algebraic terms� followed by remarks
speci�cally in terms of the constraints themselves�

We begin therefore with a brief 	very�
 review of the motivating
background� a tiny bit of symplectic geometry� slightly more of Poisson
algebra and the essentials of constraint varieties and their symmetries in
the �rst class case� The reader who desires more extensive background
or a more leisurely exposition may consult a variety of sources listed in
the bibliography� The relations between the algebra and the motivating
geometry are exposed particularly clearly in �����

���� The Hamiltonian Formalism� The motivating physical
systems are described as di�erential equations of motion or evolution
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involving smooth functions on a manifold� The underlying manifold W
is assumed to be symplectic� This means there is a ��form � such that
d� � � and �dimW �� �� Equivalently� � induces an isomorphism

TW � T �W�

	With an eye to future applications� we would like to allow W to be
in�nite dimensional� in which case the appropriate de�nition is that
the induced map TW � T �W be one�to�one�
 In local coordinates
q�� ���� qn� p�� ���� pn� the form � looks like dqi � dpi 	the summation con�
vention will be assumed throughout this paper
�

From an algebra point of view� the crucial point is two�fold� For any
function f � C�	W 
� there is a Hamiltonian vector �eld Xf de�ned by
�	Xf � 
 � df � For two functions f� g � C�	W 
� their Poisson bracket
ff� gg � C�	W 
 is de�ned by

ff� gg � �	Xf � Xg
 � df	Xg
 � �dg	Xf
�

This bracket makes C�	W 
 into a Poisson algebra� that is� a commu�
tative algebra P 	with product denoted fg
 together with a bracket
f � g � P �P � P forming a Lie algebra such that ff� g is a derivation
of P as a commutative algebra� ff� ghg � ff� ggh� gff� hg�

A typical Hamiltonian system is one of the form ff�Hg � df�dt for
�xed H � Symmetries of such a system are given by functions g which
Poisson commute with H � they form a sub�Lie algebra of C�	W 
� Sym�
metries arise also in connection with �constraints�� Regarded as in a
dynamical system� solutions can be constrained to lie in a sub�manifold
V � W 	more generally� V is just a sub�space
� hereafter called the con�
straint locus� also known in the literature as a constraint surface� As in
algebraic geometry� we can think of V as the zero set of some functions
�� � W � R� called constraints� The algebra of functions C��in�the�
sense�of�Whitney on V can be identi�ed with C�	W 
�I where I is the
ideal of functions which vanish on V � If V � W is a closed and embed�
ded submanifold� this agrees with the usual notion of smooth functions
on V �

Now ifW is symplectic 	or just given a Poisson bracket on C�	W 

�
Dirac calls the constraints �rst class if I is closed under the Poisson
bracket� 	If the R�linear span of the �� is closed under the bracket�
physicists say the �� close on a Lie algebra� this is a very nice case�
but the more general �rst class case is where homological techniques
are really important�
 When the constraints are �rst class� we have
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that the Hamiltonian vector �elds X�� determined by the constraints
are tangent to V 	where V is smooth
 and give a foliation F of V �
Similarly� C�	W 
�I is a Lie module over I with respect to the Pois�
son bracket� In symplectic geometry� when V is smooth� it is usually
called a coisotropic submanifold 	see ��� for generalizations when V

is not smooth
� For the general case� we will call the constraint locus
coisotropic if the ideal is �rst class�

In many cases of interest� I does not arise from the Lie algebra of
some Lie group of transformations of W or even V � but the correspond�
ing Hamiltonian vector �elds X�� are still referred to as 	in�nitesimal

symmetries� In the nicest case� e�g� where the foliation F is given by a
principal G�bundle structure on a smooth V � the algebra C�	V�F
 can
be identi�ed with the I�invariant sub�algebra of C�	W 
�I � In great
	if not complete
 generality� this I�invariant sub�algebra represents the
true observables of the constrained system�

In this context� the �classical BRST construction�� at least as devel�
oped by Batalin�Fradkin�Vilkovisky and phrased in terms of constraints�
is a homological construction for performing the reduction of the Pois�
son algebra C�	W 
 of smooth functions on a Poisson manifold W by
the ideal I of functions which vanish on a coisotropic constraint locus�
But the construction produces cohomology in other degrees than zero�
which at least in some cases� admits a geometric interpretation�

Instead of considering just the �observable� functions� one can con�
sider the deRham complex of longitudinal or vertical forms of the fo�
liation F � that is� the complex �	V�F
 consisting of forms on vertical
vector �elds� those tangent to the leaves� If we think of F as an involu�
tive sub�bundle of the tangent bundle to V � then �	V�F
 consists of sec�
tions of ��F � In adapted local coordinates 	x�� ���� xr�s
 with 	x�� ���� xr

being coordinates on a leaf� a typical longitudinal form is

fJ 	x
dx
J

where J � 	j�� ���� jq
 with � � j� � ���jq � r� the leaf dimension�
The usual exterior derivative of di�erential forms restricts to determine
the vertical exterior derivative because F is involutive� This complex
is familiar in foliation theory� c�f� ����� The classical BRST�BFV con�
struction has� in the nice cases� the same cohomology as this complex
of longitudinal forms�

A major motivating example for the BFV construction was provided
by gauge theory� Here W is T �A where A is the space of connections
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for a �xed principal G�bundle G� P � B� The reduced phase space is
T �	A�G
 where G is the group of �gauge transformations�� the vertical
automorphisms of P �

In considering what the physicists ����������������� ������������ did in
some special cases� I recognized a homological �model� for �	V�F
 in
roughly the sense of rational homotopy theory ���� This is the same
sense in which the Cartan�Chevalley�Eilenberg complex ��� for the co�
homology of a Lie algebra g is a �model� for ��	G
 where G is a
compact Lie group with Lie algebra g� The physicists� model is it�
self crucially a Poisson algebra extension of a Poisson algebra P � and
its di�erential contains a piece which reinvented the Koszul complex for
the ideal I � The di�erential also contains a piece which looks like the
Cartan�Chevalley�Eilenberg di�erential� Generalizations of the Cartan�
Chevalley�Eilenberg di�erential as they occur in physics are usually re�
ferred to as BRST operators� This honors seminal work of Becchi� Rouet
and Stora ��� and� independently� Tyutin ���� Apparently it was the
search for such an operator in aid of quantization which motivated the
work of Batalin� Fradkin and Vilkovisky�

It was Browning and McMullan ��� who �rst identi�ed the Koszul
complex within the construction in the regular case� 	Henneaux had
already called attention to the relevance of that acyclicity
 leading
both Dubois�Violette ���� and myself �� independently to adopt a
more fully homological approach� although with somewhat di�erent em�
phases� Dubois�Violette retains some of the symplectic geometry and is
able to handle regular general 	not necessarily �rst class
 constraints�
On the other hand� by restricting to �rst class constraints� in joint work
with Henneaux et al ����� I was able to handle non�regular ideals in
suitable geometric circumstances�

In the present paper� I start at the level of the purely 	Poisson
 al�
gebraic structures� In particular� I adapt the notion of �model� from
rational homotopy theory and use the techniques of homological per�
turbation theory� Although the treatment of BFV is basis dependent
	individual constraints
 and nominally �nite dimensional� I attempt to
work more invariantly in terms of the ideal generated by the constraints
and take care to avoid assumptions of �nite dimensionality� Although
originally invented in the context of quantization� both BRST cohomol�
ogy as they described it and the BFV�generalization are mathematically
interesting in the �classical� setting� The present paper is concerned only
with the clasical setting but in the full generality of a �rst class ideal� in
contrast to the paper of Kostant and Sternberg ���� whose main interest
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is in quantization issues for the case of an equivariant moment map and
hence do not deal with the BFV�generalization nor with homological
perturbation methods�

�� Reduction

We have presented a geometric picture of reduction as referring to
W �� V � V�F � There is a variety 	pun intended
 of di�culties with
this approach� The constraint locus V can fail to be a submanifold�
Even if it is a submanifold� the quotient  V �� V�F may not be a man�
ifold� in fact� may not even be Hausdor�� 	An intermediate situation
of considerable interest occurs with the quotient V�F being a strati�ed
symplectic space �����


When 	W��
 is a symplectic manifold with a smooth coisotropic
submanifold� one of the nicest cases is called �regular�� namely when the
quotient V�F is a manifold and the projection V �  V is a submersion�
This implies further that �jV has constant rank on TV 	so that �jV is a
presymplectic form on V 
� and F is an involutive distribution given by
ker �jV which is �brating� Then a standard argument� due essentially
to E� Cartan ���� or ���� Thm� ������ shows that there exists a unique
symplectic form  � on  V satisfying �� � � �jV � The reduction of 	W��

is then the symplectic manifold 	  V �  �
� and the corresponding reduced
Poisson algebra is C�	  V 
 with the Poisson bracket that is associated
to  ��

In the �singular� case� when these conditions fail to hold� reduc�
tion in the above sense will not be well de�ned� Various de�nitions
of reduction are possible� depending upon which aspects of the theory
are considered primary� 	Of course� each such de�nition should agree
with regular reduction when both apply�
 Below we present two such
de�nitions 	following ���
� although there are undoubtedly others�

The �rst type of reduction we shall consider is based upon the notion
of an �observable�� Following Bergman� we call a function onW an ob�
servable i� its Poisson bracket with each �rst class constraint is again
a constraint� i�e�� h � C�	W 
 is an observable if and only if fh� Ig � I �
Bergman emphasized observables 	rather than the points in V which are
states
 because observables represent measurable quantities� 	The con�
dition fh� Ig 	 � on V is a gauge invariance condition�
 The set O	V

of observables forms a subalgebra of the associative algebra C�	W 
�

� Dirac reduction� takes two states x� y � V to be physically equiv�
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alent i� they cannot be distinguished by observables� This amounts to
de�ning an equivalence relation 
 on V by x 
 y i� h	x
 � h	y
 for all
observables h� The corresponding reduced space is  V � V� 
� The ob�
servables after reduction are identi�ed with the elements of O	V
 which
are �xed under the adjoint action of I 	with respect to Poisson bracket
�
Since we are dealing with �rst class constraints� these observables inherit
a Poisson bracket�

Example� Zero angular momentum in two dimensions�

Here W � T �R� � R��R� � f	q� p
g and the angular momentum is
q�p � q�p��q�p� with constraint set V � f	q� p
jq�p��q�p� � �g� The
foliation F is in fact given by the orbits of the standard circle action
on R� lifted to T �R�� The Dirac reduction can be identi�ed with the
symplectic orbifold C �Z� �

Sniatycki and Weinstein ��� have de�ned an algebraic reduction in
the context of group actions and momentum maps which is guaranteed
to produce a reduced Poisson algebra but not necessarily a reduced
space of states 	cf� ����
� 	In contrast� Kostant and Sternberg use the
Marsden�Weinstein reduction �����
 The S�W 	Sniatycki and Weinstein

reduced Poisson algebra is 	C�	W 
�I
G where V � J��	�
 for some
equivariant Poisson map J �W � g� 	called amomentmap
� equivari�
ant with respect to a given G�action on W� with g being the Lie algebra
of G� 	If G is compact and connected� 	C�	W 
�I
G is isomorphic to
the Dirac reduction C�	W 
G�IG �
 With hindsight� the generalization
of S�W reduction to a general �rst class constraint ideal I is obvious�
The issue of its suitability is not one of geometry necessarily� but rather
one of physics�

The present paper grew out of the realization that the BFV con�
struction could be regarded as a homological model which in degree zero
models the I�invariants of C�	W 
�I � The whole construction turned
out in many cases to be a model for the complex of longitudinal forms
��	V�F
� From an algebraic geometric point of view� it is indeed nat�
ural to de�ne the observables on V by restriction of observables on W �
that is� to consider the quotient algebra C�	W 
�I � which corresponds
to the algebra of smooth 	in�the�sense�of Whitney
 functions on V � In
physics� this is expressed by saying two functions onW are weakly equal
	f � g
 if their di�erence vanishes on V �

Now let us recast the problem in purely algebraic terms� Consider
an arbitrary Poisson algebra P with an ideal I which is closed un�
der the Poisson bracket� Reduction is then achieved by passing to the
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I�invariant subalgebra of P�I � Note that a class �g� is I�invariant if
fI� gg � I � equivalently� if f�� gg � � for all constraints � � I � This
subalgebra inherits a Poisson bracket even though P�I does not� For
f� g � P and � � I� we have ff � �� gg � ff� gg� f�� gg where f�� gg
need not belong to I � but will if the class of g is I�invariant�

The Poisson algebra of invariants amounts to the quotient NP 	I
�I
where NP 	I
 denotes the normalizer of I in P in the sense of Lie alge�
bras� the ideal I is a Poisson ideal in NP 	I
�

In this context� the analog of longitudinal forms are the alternating
multilinear�over�P�I functions h � I�I��  � I�I� � P�I which again
form a graded commutative algebra� which we denote

AltP�I	I�I
�� P�I
�

We use I�I� because the corresponding Hamiltonian vector �elds are
restricted to V in providing the foliation F �

The fact that I is a sub�Lie algebra of P but is not a Lie algebra
over P 	the bracket is R�linear but not P �linear
 is a signi�cant subtlety�
One way to handle this is to observe that I�I� inherits the structure
of what Rinehart called an 	R� P�I
�Lie algebra� This corresponds to
what Herz ��� called a quasi�Lie algebra and what Palais ��� called
a d�Lie ring� Since it is Rinehart�s paper that establishes the relation
to the geometry and was his major contribution in a tragically short
career� we prefer to refer to the Lie�Rinehart pair 	I�I�� P�I
�

De�nition ��� �������	�� A Lie�Rinehart pair 	L�A
 over a ground
ring k consists of a commutative k�algebra A and a Lie ring L over k
which is a module over A together with an A�morphism � � L� Der A

such that

��� f	� � 	�	�
f
	� f ��� 	� for �� 	 � L� f � A�

Notice this is the condition satis�ed by L � I�I� and A � P�I

with �	�
f � f�� fg� Hence we can consider the Rinehart complex
AltP�I	I�I

�� P�I
 with di�erential d given by

	dh
	��� ���� �q
 �
X

i�j

	��
i�jh	��i� �j �� ����  �i� ����  �j� ���


�
X

i

	��
i�	�i
h	����  �i� ���
�	���
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Realizing that d is a derivation with respect to the usual product
of alternating functions� it is su�cient to know the above de�nition
for q � � and �� This di�erential given by Rinehart ��� is an obvious
generalization of that of Cartan�Chevalley�Eilenberg�

When P�I is replaced by P � C�	W 
 and I�I� by the Lie algebra
corresponding to vector �elds on W � the Rinehart complex becomes the
de Rham complex of W � As remarked by Stephen Halperin� the Rine�
hart complex AltP�I	I�I

�� P�I
 is the complex ��	V� F 
 of longitudinal
forms� when P � C�	W 
 and I is a �rst class ideal� 	See Huebschmann
���� ����� ���� for further applications of Rinehart�s complex to Poisson
algebras�


This is the complex we wish to �model�� We will do this using just
the Poisson algebra structure of P and the sub�Lie algebra and P �ideal
I � in contrast to the treatments of ���� and ���� which retain some of
the local manifold properties of W �


� Di�erential graded commutative algebras

One of the hallmarks of homological algebra is the use of resolu�
tions� for di�erential homological algebra� �models�� in the sense to be
described� are more useful for many purposes� For our approach to con�
strained Hamiltonian systems� one of the basic objects is the deRham
complex 	��	M
� d
 of di�erential forms on a smooth manifold regarded
as a DGCA 	di�erential graded commutative algebra
�

��	M
 � f�p	M
g where �p	M
 denotes the 	real
 vector space of
di�erential p�forms�

the wedge product � � 
 of forms gives ��	M
 the structure of a
graded commutative algebra 	over R
 � �p � �q � �p�q with � � 
 �
	��
pq
 � ��

the exterior derivative d � �p � �p�� is a graded derivation�
d	� � 

 � d� � 
 � 	��
p� � d
 and d� � ��

Another DGCA that plays an important role in mathematical physics
is the Cartan�Chevalley�Eilenberg complex 	�g�� d
 for the cohomology
of a Lie algebra g� Here� if g is �nite dimensional� �g� is usually inter�
preted as the exterior algebra E	g�
 on the R�dual of g� but� in general�
�g� should be interpreted as AltR	g�R
� the algebra of alternating mul�
tilinear functions on g� The coboundary d is given by 	���
 with �i � g�

Rational homotopy theory is much simpler than ordinary homotopy
theory because� for a large class of spaces� it is completely equivalent



��� jim stasheff

to the homotopy theory of DGCAs over the rationals ���� Moreover�
computations as well as theoretical analysis can be carried out e�ectively
in terms of the models of Sullivan ����

De�nition 
��� In the category of DGCAs over any k�algebra P � a
model of a DGCA 	A� d
 is a morphism � � 	A� �
� 	A� d
 of DGCAs
such that A is free as a graded commutative algebra over P and �� �
H	A
 � H	A
�

Here� free as a graded commutative algebra over P means A is of
the form P �E	Zodd
�k�Zeven � where E � exterior algebra and k� � �
polynomial algebra and Z is some free graded vector space of �nite type�
Following the tradition in rational homotopy theory� the free graded
commutative algebra on a graded vector space Z will be denoted �Z�

A major point of the Cartan�Chevalley�Eilenberg construction in
the case of a compact Lie group G is a natural map 	�g�� d
� ��	G

inducing a homology isomorphism� i�e�� a model for ��	G
�

The main thrust of this paper is the construction of a di�erential
graded Poisson algebra which is� in many cases� a model for the forms
along the leaves of the constraint variety of a �rst class system� in partic�
ular� H� will be isomorphic to the algebra of observables in the reduced
sense� 	P�I
I �

�� Models for P�I and AltP�I	I�I
�� P�I
 and the BRST

generator

Now we reverse the procedure of BFV and �rst provide a model
for P�I as a P �module� This model is a DGCA 	P � �!� �
 where !
is a graded vector space 	in fact� negatively graded
 and � continues
to denote the free graded commutative algebra� 	This grading is the
opposite of the usual convention in homological algebra� but is chosen
to correspond to the 	anti�
 ghost grading in the physics literature and
because we are modelling a DGCA of di�erential forms�
 This model is
constructed as follows� Let " be the space of P �indecomposables of I �
i�e�� " � I� #PI where #P is a complement to the constants R� P � Let
s" denote a copy of " but regarded as having degree ��� Let � be the
derivation of P � �s" determined by choosing a splitting " � I and
factoring it as �s � "� s"� I� 	In terms of representatives � � "� ��
is s����
 In other words� P ��s" is the Koszul complex for the ideal I
in the commutative algebra P ��$�� �$�� If I is what is now known as a
regular 	at one time� Borel
 ideal 	an algebraic condition� but implied by
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I being the de�ning ideal in C�	W 
 for V � J��	�
 when � is a regular
value of J �W � RN
� the Koszul complex 	P � �s"� �
 is a model for
P�I � For more general ideals� this fails� i�e��H i	P��s"� �
 �� � for some
i �� �� The Tate resolution �$� kills this homology by systematically
enlarging s" to a graded vector space ! and gives a model 	P ��!� �

as desired� We refer to this model as KI for brevity� It is graded by the
grading on ! extended multiplicatively� � being still of degree ��

Now we wish to replace P�I by KI in AltP�I	I�I
�� P�I
 with the

Rinehart generalization of the Cartan�Chevalley�Eilenberg di�erential
d and further alter it to a model which is itself a 	graded
 Poisson
algebra� The construction can be carried out quite generally� but we
succeed in showing it is a model in our sense most easily in the case of
a regular ideal� which obtains under reasonable geometric conditions�
Following the major theorem� we describe a few other cases in which
the model property also holds� 	Lars Kjeseth is continuing the purely
algebraic version of this class of examples� Kimura ���� has shown that
for constraints which are not �rst class� the corresponding complex is
NOT in general a model for the complex of forms along the leaves�


Theorem ���� If I is a �rst class ideal� there is a structure of dif�

ferential graded Poisson algebra on 	�!
� � P � �! and a map of dif�

ferential graded Poisson algebras

� � 		�!
� � P � �!
� �
� AltP�I	I�I
�� P�I


which induces an isomorphism on cohomology in degree zero� Here � is

� � d� �terms of higher order� in a sense to be made precise below�

The algebra structure on 	�!
� � P � �! is that of the algebra of
graded symmetric multilinear functions� The map � is fairly straight�
forward� Map P � �! � P�I by projection onto P and then by the
quotient onto P�I � Similarly project 	�!
� onto 	�s"
� 	recall s" is a
summand of ! 
 and then� identifying 	�s"
� with Alt	"� R
� map this
to AltP 	I�R
 by pulling back over the quotient I � I� #PI � "� Finally�
note the isomorphism of algebras AltP 	I� P�I
� AltP�I	I�I

�� P�I
 �

We will construct the di�erential � without any assumption on the
ideal I other than that it is �rst class� The entire construction 		�!
��
P � �!
� �
 we will denote by X � In the full generality of a �rst class
ideal� we will show H i	X
 � � for i � � and H�	X
 � 	P�I
I and
moreover the isomorphism is given by the inclusion 	P�I
I � P�I �

P ��! via the chosen splitting P�I � P � This then gives a �no�ghost
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theorem�� H�	X
 is represented completely by elements of P without
any ghost 	or antighost
 contributions from �!� 	or �!
�

For i � �� H i	X
 must be represented with ghosts� When this
involves only ghosts corresponding directly to constraints 	i�e�� elements
of 	s"
�
 but no ghosts�of�ghosts� �geometrically� we are looking at
longitudinal forms� It is only from the transverse 	�gauge��xed�
 point
of view that the ghosts inherit their name�

The key to the main theorem comes from the Hamiltonian and BRST
formalisms� Let 	�!
��P ��! be given a bigrading 	r� s
� Assuming
P ungraded 	see x� for the graded or super case
� P � �! is already
	negatively
 graded and this grading is s� called the resolution degree�
Then 	�!
� inherits the dual 	positive
 grading r� called the ghost de�
gree� adopting the term from the physics literature 	where the negative
of the resolution degree is called the anti�ghost degree
� The total degree
is the sum r�s of the ghost degree and the resolution degrees� Batalin�
Fradkin� and Vilkovisky make X into a Poisson algebra by extending
the Poisson bracket on P to one on X by de�ning

fh� 	g� h		
 for h � !�� 	 � !�

all other brackets not determined by the derivation property being set
equal to zero� This extended bracket is of total degree zero� but mixed
bidegrees�

���� The BRST generator� The sought�for di�erential � is
constructed to be of the form � � fQ� g where Q is a formal sum
of terms Qn de�ned by induction 	on n
� In physics� Q is referred
to as a BRST generator or operator� in keeping with the philosophy
mentioned in x� with particular emphasis on the facts that �
 �� � �
or equivalently� fQ�Qg � � and �
 Q contains a piece corresponding to
the Cartan�Chevalley�Eilenberg di�erential�

The proof of the existence of Q can be handled e�ectively by the
�step�by�step obstruction� methods of homological perturbation theory
����� ����� ����� ��$�� ���������� ����� We adapt the details to this case�
rather than appealing to the general theory� We make crucial use of the
�ltration of X by the form or monomial degree� i�e�� 	�i!
� � P � �!
is the part of X of form degree i� or equivalently� �form degree i� refers
to an i�multilinear graded symmetric function from ! to P � �!� The
�ltration is de�ned by� Fn � FnX is the space of forms of degree � n�
We use the strict inequality so that this �ltration is multiplicative with
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respect to both parts of the Poisson algebra structure�

FpF q � Fp�q�� � Fp�q and fFp�F qg � Fp�q�

Start with Q� � ! � P � �! as the Koszul�Tate di�erential �
restricted to !� As an element of X � this Q� is of total degree � and
form degree �� but fQ�� g is a sum of two pieces� of form degree �
	namely � � �
 and of form degree �� Since the bracket restricts to
the pairing 	by evaluation
 of 	�!
� and �!� the term of form degree
� includes the adjoint of � taking HomP 	�! � P� P 
 to itself� The
remainder of fQ�� g is given by the original bracket 	in P 
 of the
coe�cients of Q� with elements of P �

Since all our objects are at least vector spaces� the model property
of P ��! can be evidenced by a �contracting homotopy� s � P ��!�

P � �! of degree �� such that s� � �s � � � #� where #� � P � �! �
P � P�I � P ��! is given by � composed with an R�linear splitting
P�I � P �

For any element R � X � let R� denote �
�fR�Rg� Now construct

Rn �
P

i�nQi by induction so that

fRn� Rng � F
n�� and �fRn� Rng � F

n���

De�ne Qn�� � �s��fRn� Rng � �sR�
n�

The following slightly complicated computation shows Rn�� satis�es
the inductive assumption�

Both � and s preserve the �ltration� and from the way Q� is de�ned�
fQ�� g � �� � increases �ltration� Start with

R�
n�� � 	Rn �Q�

n��

� � R�

n � fRn� sR
�
ng� 	sR�

n

��

The last term 	sR�
n


� � F�n�	 since sR�
n � F

n�� and �n �  � n � �
On the other hand�

fRn� sR
�
ng 	 	�� �
	sR�

n
 mod Fn���

since Rn � Q� �Q� � � � � and the fQi� g for i � � increase �ltration�
Thus

fRn� sR
�
ng 	 �	�� s�
R�

n � R�
n mod Fn���

so

R�
n�� 	 �	�� s�
R�

n �R�
n mod Fn��	��


	 � mod Fn��	��
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by the assumption on �R�
n �

Similarly

�R�
n�� 	 �R�

n � �fRn� sR
�
ng� �	sR�

n

�	��


	 �R�
n mod Fn�	�	�


Now we need to commute � with fRn� g� Since fRn� g � � � �
increases �ltration by at least one� its square does so by at least two�
Thus

fRn� fRn� gg � fRn� �� �g � �� �fRn� g

applied to sR�
n is of �ltration at least n � � Now the graded Jacobi

identity gives
�fRn� fRn� gg � ffRn� Rng� g�

which increases �ltration by n� �� thus

�R�
n�� 	 �R�

n � fRn� �sR
�
ng mod Fn�	

	��


	 �R�
n � fRn� R

�
ng � fRn� s�R

�
ng mod Fn�		��


	 �R�
n � �R�

n mod Fn�		�$


since fRn� s�R
�
ng 	 �s�R�

n modFn�	 and fx� fx� xgg � � for x of any
degree 	over a �eld of characteristic not equal to �
�

Thus we have constructed a di�erential graded Poisson algebra for
any coisotropic ideal� Where possible� we will show that we have a model
for AltP�I	I�I

�� P�I
 by the usual techniques of comparison in homo�
logical perturbation theory� namely comparison of spectral sequences�
In one �nal case� we can do this locally but appeal to a geometric ar�
guement to patch the local results� After establishing that� we will look
at issues involving choices 	possibly non�minimal
 of generators 	con�
straints
 for the ideal I �

From the de�nition of the �ltration Fp� the associated graded E�	X

is isomorphic to 	�!
� � P � �!� To analyze d�� notice that since s
preserves the form degree� Qi�� � �sR�

i � F i�� and hence fQi� g

increases �ltration by at least i� As mentionned earlier� fQo� g � �� �
also increases �ltration so d� is 	induced by
 the Koszul di�erential ��
Thus

E�	X
 � 	�!
� � P�I � AltR	!� P�I
�

and E�	X
 is concentrated in anti�ghost degree �� the spectral sequence
necessarily collapses from E�� To determine H�	X
 � E���

� � we need
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only analyze d� on "� For h � P�I� consider fQ�� hg � I � P�I � It is
given by fQ�� hg	�
 � f�� hg for � � I� Thus H�	X
 is isomorphic to
the I� invariants of P�I �

When the ideal I is regular� ! � s" and we can analyze d� on �s"
similarly� For example� for h � I � P�I � consider fQ�� hg � I � I �

P�I � It is given by fQ�� hg	��� ��
 � f��� h	��
g � f��� h	��
g while
fQ�� hg	��� ��
 � ��

�fsfQ�� Q�g� hg	��� ��
 � �hf��� ��g� 	At this
point� one appreciates the facility of non�invariant description in terms
of a generating set of constraints f��g for I and a dual set f
� � I �
Pg�


Thus we see d� 	up to sign
 looks like the Rinehart generalization of
the Cartan�Chevalley�Eilenberg di�erential� It is this identi�cation of
	E�� d�
 which motivates the name BRST generator for Q�

Now to make the comparison with the complex of longitudinal forms�
since " is de�ned as a quotient of I � there is the induced chain map

� � X � Altk	!� P�I
� Altk	s"� P�I
� AltP 	I� P�I


� AltP�I	I�I
�� P�I


as described above� In the regular case all maps except � are isomor�
phisms� For the constrained Hamiltonian setting with which we began�
in which P is C�	W 
� we have identi�ed AltP�I	I�I

�� P�I
 with the
longitudinal forms of the foliation F of V and d� with the exterior
derivative �along the leaves��

Theorem ���� If I is a regular �rst class ideal in C�	W 
� the map

� induces an isomorphism H	X
 � H	�	V�F

�

When I is not regular� we still have the map but in general lack
su�cient information to conclude an isomorphism in cohomology�

Now the physicists do not work with the ideal explicitly but rather
with a set of constraints� which is a set 	not necessarily minimal
 of
generators for the ideal� The corresponding BFV construction starts
with " as the vector space spanned by the constraints� rather than
with I�PI � In certain cases� even though the constraints do not form
a regular sequence� we can still make the identi�cation of H	X
 with
H	�	V�F

�

The redundant case� The set of constraints may be reducible in
a trivial way� a proper subset may consist of a regular sequence of
generators� Then we can split " as % � & where % is the span of the
minimal subset and & is spanned by the complementary subset� The
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Koszul�Tate resolution of P�I splits as the Koszul resolution determined
by % tensored with a contractible DCGA� Then Alt	!� 
 splits similarly
and the BRST generator can be constructed �rst in the % part and then
extended so the results will be the same as when using " � I�PI �

In particular� if the constraints are given by an equivariant moment
map J �W � g� where G acts by symplectomorphisms but with kernel
H� then I�PI is isomorphic to g�h but the span of the constraints would
be isomorphic to g� Here choose a splitting %�& such that & � h and
% � g�h� then proceed as in the redundant case�

In ���� and ����� the setting is speci�cally that of a symplectic mani�
fold 	phase space
 with a constraint submanifold 	�surface�
 and more�
over the assumption is made that locally the constraints can be sepa�
rated into �independent constraint functions� and dependent ones which
can be expressed as functional linear combinations of the independent
ones with coe�cients which are regular in a neighborhood of the con�
straint submanifold� Thus locally we are in the redundant case so iden�
tities involving the globally de�ned BRST generator and comparisons
with the complex of forms along the leaves can be veri�ed locally� we
again have H	X
 � H	�	V�F

�

Finally� the construction of � and of Q involves a choice of contract�
ing homotopy s and implicitly of a choice of splitting P�I � P � A
change in s produces changes in � but not in the homotopy type of
	X� �
 as DGCA� Moreover the change in s can be realized by an auto�
morphism of �! and the induced one on �!�� This is an example of
what is known as a canonical transformation� a basic automorphism of
any Hamiltonian system�

�� Generalizations In�nite dimensions and super�algebras

If I is regular and �nitely generated over P 	so " is �nite dimensional
overR
�AltP 	"� P�s"
 is �nitely generated as a P �module and Qn � �
for su�ciently large n� If I is �nitely generated but not regular� ! may
easily be in�nite dimensional� though �nite in each grading� and so all
Qn may be non�zero�

More importantly� there are many examples occurring in physics
	�eld theory
 in which " is itself in�nite dimensional� That is why we
have been careful to emphasize Alt or to take the dual of �! rather than
�	!�
� Actually both physical and mathematical considerations 	cf�
Gel�fand�Fuks cohomology
 suggest that the alternating functions might
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better be restricted to being continuous in an appropriate topology�
Early in the development of Batalin� Fradkin and Vilkovisky�s ap�

proach� attention was called to the generalization to a super�Poisson
algebra P � P� � P� with super�constraints� This means that P is a
GCA 	graded by Z�� � f�� �g
 with a graded bracket f � g�

P� � P� � P��	���


P� � P� � P��	���


P� � P� � P�	���


with graded anticommutativity� graded Jacobi identity� and graded de�
rivation property 	Leibnitz rule
�

ff� ghg � ff� ggh� 	��
jf jjgjgff� hg�

where f � Pjf j� g � Pjgj�
It has long been known in algebraic topology how to generalize

the construction of models such as the Koszul�Tate complex or the
Chevalley�Eilenberg complex to the graded setting� e�g��! is now a
graded vector space and s" is an isomorphic copy of a " regraded
down by � so that � is still of degree �� The use of � to denote the
free graded commutative algebra on a graded vector space means that
the only necessary change in our treatment is to specify the resolution
degree as the one implied by the degree on s" with � being of resolution
degree �� Notice this is not the same as ignoring the internal grading on
s" and just counting the algebraic degree� 	It is spelled out in ��$� for
example�
 From there on� the signs take care of themselves if we follow
the usual conventions� introducing a sign 	��
pq whenever a term of
total degree p is pushed past a term of total degree q�
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